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EXPERIENCE OF OPTIMIZATION OF AERODYNAMIC

CHARACTERISTICS OF AIRFOILS

UDC 533.69.011.34S. M. Aul’chenko, A. F. Latypov, and Yu. V. Nikulichev

The complex approach developed previously for the numerical solution of problems of optimization
and designing of airfoils is applied to solve the problem of increasing the lift-to-drag ratio of subsonic
airfoils used.

Introduction. One of the methods of improving flying vehicles is the design of airfoils that possess necessary
properties under given restrictions. The airfoil should have the optimal characteristics in cruising flight. Such an
airfoil can be simulated at the current stage of development of numerical methods and computational equipment
[1–5]. Nonformalized design methods allow one to construct airfoils that satisfy initial parameters (the airfoils
obtained belong to the region of parameters admissible by geometric and gas-dynamic restrictions) but are not
optimal, since the principle of optimization is not inherent in the design technology [6]. Mathematical methods of
solving optimization problems allow one to improve the characteristics of the airfoils used and obtain new solutions
in a prescribed allowed set.

A direct method of optimization has been actively developed lately. It is based on using numerical methods
of optimization and computational methods of fluid dynamics. In this case, a priori information on the solution
is not needed. The main difficulty is the large computer time spent on computation and analysis of the behavior
of derivatives of the objective function with respect to design variables. Under these conditions, the choice of the
gas-flow model, the numerical method for solving the corresponding equations, and the method of optimization is
very important. Most papers dealing with design and optimization of airfoils employ either the Euler model or
the model of viscid–inviscid interaction as the gas-flow model. The use of the Navier–Stokes equations in solving
optimization problems requires the use of supercomputers and algorithms for computation parallelism. At the same
time, the question on the adequacy of turbulence models used under conditions of arbitrary variation of design
variables remains open. The use of the viscid–inviscid interaction model for solving the problem of the flow around
an airfoil is more rational from the viewpoint of both obtaining practically relevant results of solving optimization
problems and computational efficiency. Within the framework of this approach, an algorithm was developed for the
numerical solution of boundary-value problems of the subsonic gas flow around airfoils on the basis of the method
of boundary elements for solving a nonlinear integral equation on adaptive grids, which allows a successful solution
of direct optimization problems. Since the flow around airfoils occurs at high Reynolds numbers, the calculation
is performed within the framework of integral relations of the boundary-layer model. Such an approximation is
justified in this case (which is evidenced by the results of comparison of calculated and experimental polars) and
allows one to avoid repeated solutions of boundary-layer equations under conditions of possible separation upon
variation of the contour shape.

1. Formulation of the Problem. The NACA airfoil 642-215 was chosen to test the calculation method
developed [7]. The calculated and experimental characteristics are in good agreement (Figs. 1 and 2). Figure 1
shows the distribution of the pressure coefficient cp over the upper and lower surfaces of the airfoil (the value of
the x coordinate is normalized to the airfoil chord length bc and c∗p is the critical value of the pressure coefficient).
Figure 2 shows the polar for this airfoil (cx is the drag coefficient and cy is the lift coefficient). It is essential
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Fig. 1 Fig. 2

Fig. 1. Distribution of the pressure coefficient over the upper and lower surfaces of the NACA airfoil
642-215 (c∗p = −1.294, M = 0.6, and angle of attack α = 4◦): the solid and dashed curves refer to
the calculation and experiment, respectively.

Fig. 2. Experimental (1) and calculated (2) polars of the NACA airfoil 642-215.

that the NACA airfoil 642-215 has high aerodynamic characteristics and is, apparently, close to the optimal shape.
Therefore, it can serve as a representative object for verification of the optimization problem and the method of its
solution. The results obtained in optimization are also of practical interest.

The optimization problem is formulated as follows. We have to construct an airfoil that satisfies the gas-
dynamic constraints

M∞ = const, Mcmax 6 Mmax, Re = Re0, f(s) > f0,

and the geometric constraints

dmin 6 dcmin, dcmax 6 dmax, Smin 6 Sc, bc = const, F (x,p) ∈ Ck(0, bc), k > 1

and ensures the maximum (minimum) of the objective functional Φ(p, g):

Φ(p, g) = Ka, g = (M∞,Mmax,Re0, f0, dmin, dmax, Smin).

Here M∞ is the free-stream Mach number, Mcmax is the maximum local Mach number on the contour, Mmax is a
prescribed maximum value of the Mach number, Re is the Reynolds number, dcmin and dcmax are the minimum
and maximum thicknesses of the airfoil in percentage of the chord length, Sc is the airfoil area, f0 is a constant that
enters the chosen detachment criterion, s is the length of the arc along the upper and lower contours of the airfoil,
dmin and dmax are the allowable minimum and maximum thicknesses of the airfoil, Smin is the allowable minimum
area covered by the airfoil contour, F (x,p) is a function that describes the contour configuration and depends on
the vector of parameters p, k is the degree of contour smoothness, and Ka is the lift-to-drag ratio. In the problem
considered, we have g = (0.5, 1, 106,−3, 0, 15%), and no constrains on the area were imposed.

The problem considered reduces to the problem of nonlinear programming, which is solved in our case by
a gradient-free method of search with adaptation and the use of an element of randomness. Different strategies of
obtaining the optimal solution are considered. A special feature of determining the optimal contour of the airfoil
is the choice of the method for including the angle of attack into the set of parameters varied in calculating the
functional. In this case, one of two approaches can be used: 1) the angle of attack is included into the set of
varied parameters; because of the strong effect of variation of the angle of attack on variation of the functional,
the functional-level surfaces have a ravine structure, and it is difficult to reach the extreme point; 2) the angle of
attack at which the extreme value of the functional is reached is determined at each variation of parameters. If the
constraints include the condition of equality of the lift force to a given value, the angle of attack corresponding to a
given restriction for each variation of geometric parameters is found in the second approach. The second strategy
allows one to obtain the best (i.e., maximum or minimum) value of the objective functional.
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Fig. 3 Fig. 4

Fig. 3. Initial NACA airfoil 642-215 (dashed curve), optimal airfoil (solid curve), and the corresponding
distributions of the pressure coefficient.

Fig. 4. Initial symmetric airfoil (dashed curve), optimal airfoil (solid curve), and the corresponding distri-
butions of the pressure coefficient.

TABLE 1

Calculation Results without Constraints on cy

Airfoil
number

cy cx cm Ka

1 0.551 0.0096 −0.037 57.4
2 0.718 0.0122 −0.063 59.0
3 0.801 0.0125 −0.136 64.1

TABLE 2

Calculation Results for a Given Value of cy

Airfoil
number

cy cx cm Ka

1 0.605 0.0117 −0.037 51.8
2 0.602 0.0114 −0.062 53.0
3 0.602 0.0101 −0.125 59.7

2. Calculation Results. Figures 3 and 4 show the results of solving the problem of maximization of
the lift-to-drag ratio, the initial contours being the NACA airfoil 642-215 and symmetric airfoil, respectively. The
initial and final distributions of the pressure coefficient and airfoil contours are plotted by dashed and solid curves,
respectively. The angle of attack corresponds to the maximum value of the lift-to-drag ratio. In Figs. 3 and 4, we
have X = x/bc.

The integral aerodynamic characteristics of the initial airfoil and optimal airfoils obtained are listed in
Tables 1 and 2 (No. 1 is the initial NACA airfoil 642-215, No. 2 is the optimal airfoil obtained from airfoil 1, and
No. 3 is the optimal airfoil obtained from the symmetric airfoil). The lift-to-drag ratio of airfoil 2 was improved
mainly by increasing the curvature of the upper contour and shifting it toward the rear part. This allowed an
increase in the lift force with an insignificant increase in drag of the airfoil. The airfoil obtained from the symmetric
initial contour has an even higher lift-to-drag ratio caused by much greater “trimming” of the rear part of the
lower contour, which allowed an increase in the lift force with a simultaneous decrease in the angle of attack.
This, in turn, led to a “plateau” in the velocity distribution on the upper surface of the contour. An extended
section of the laminar boundary layer was formed thereby, which reduced the increase in drag inevitable when
adverse pressure gradients appear in the rear section with “trimming.” It follows from Table 1 that the absolute
value of the coefficient cm in the rear part of the airfoil increases significantly with increasing aerodynamic load.
In addition, for the lift coefficient cy = 0.6 in the cruising regime, the lift-to-drag ratio of the airfoils obtained is
greater than that of the initial airfoil (see Table 2). The reason is the decrease in drag of the airfoils obtained for
a fixed value of the lift coefficient. If the maximum airfoil thickness remains unchanged, the results of solving the
problems in an identical formulation are different for different initial contours. For the NACA airfoil 642-215, this
constraint is satisfied from the very beginning. The thickness of the initial symmetric airfoil is greater than the
prescribed value. The solution of the optimization problem reduces to minimization of the composite functional
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including the objective and “penalty” functionals. The structure of the “penalty” functional is such that it increases
monotonically if the constraints are violated. Therefore, the descent trajectory upon minimization of the composite
functional depends on the position of the initial point in the space of parameters that define the geometry. Since
the composite functional is not convex, various local extremes appear.

The method developed does not allow one to calculate aerodynamic characteristics in separated flows, in
particular, the maximum lift coefficient cymax. Nevertheless, a comparison of the dependences of the shape factor
and lift coefficient on the angle of attack for the initial airfoil and resultant optimal airfoils allow us to conclude
that the value of cymax does not decrease for the optimal configurations. The final conclusion about the advantages
of the airfoils designed over other airfoils constructed with regard for the constraints formulated can be made only
after experimental studies. Nevertheless, the validity and reliability of the results obtained, which are based on the
use of the known models of fluid mechanics in the wing theory, careful testing of methods developed and used for
solving the equations of motion and optimization problems, correctness of their formulation, and agreement of the
results obtained with available experimental data and exact solutions, allow one to reduce the scale of these studies
and obtain new results inaccessible by means of parametric search for standard geometric parameters of the airfoil.

This work was partly supported by the Russian Foundation for Fundamental Research (Grant No. 99-01-
00564).
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